The Seahawks Dont Stand A Chance Unless Russell Wilson Can Keep Up

The most anticipated matchup of the divisional round of the NFL playoffs might be the Atlanta Falcons’ No. 1 scoring offense against the Seattle Seahawks’ No. 3 scoring defense. But the game between the two teams may be decided when the ball is in Russell Wilson’s hand.When the two met in Week 6, the Seahawks edged the Falcons in Seattle, 26-24. But both teams have played a lot of football since then, and though Wilson has already led the Seahawks to eight playoff wins in his young career, he might not have enough talent around him to go into the Georgia Dome on Saturday and end the Falcons’ season.The most obvious change to either team has been the Seahawks’ loss of safety Earl Thomas; his five-year Pro Bowl streak ended when he missed five of the Seahawks’ last six regular-season games with injuries. With him patrolling the backfield, the Seahawks allowed just 16.4 points per game. In the Seahawks’ five regular-season games without him, opponents averaged 22.4 points, including 34 points in a home capitulation to the already-eliminated Arizona Cardinals.But as much as the Seahawks have missed Thomas, it is their offense that has struggled with explosiveness and consistency all season. The 26-6 final score of last week’s wild card game against the Detroit Lions might make it look as though the Seahawks are back to business as usual. But going into the fourth quarter the score was just 10-6.While the Seahawks’ offensive line earned praise for its dominant run-blocking performance against Detroit, it also allowed slumping Lions pass-rusher Ezekiel Ansah to register two sacks, as many as he tallied throughout the regular season. The Seahawks will have a much tougher task on Saturday when they face the Falcons’ Vic Beasley, who had 15.5 sacks in the regular season.Tailback Thomas Rawls set a franchise playoff rushing record against the Lions, but going into the rematch with the Falcons there’s little depth behind him. Christine Michael, the Seahawks’ top rusher in the first Atlanta game, now plays for the Green Bay Packers. Head coach Pete Carroll told reporters that C.J. Procise, who has been out since Week 11 with a shoulder injury, will be a game-time decision; fifth-round rookie Alex Collins would be the only option behind Rawls if Procise can’t go.Between Michael, tailback C.J. Spiller and receiver/returner Tyler Lockett, 43 percent of the Seahawks’ 333 total yards in Week 6 were produced by players no longer on the Seahawks active roster, and the Falcons still outgained them 362-333 in that game. Wilson targeted wideouts on just 43.2 percent of his attempts; according to Pro Football Reference’s charting, he attempted only two passes deeper than 14 yards all day. He threw no touchdowns.The lack of deep passing that day was partly by design, to keep opposing pass-rushers off the banged-up Wilson.“We’ve been careful in how we would expose Russ,” head coach Pete Carroll later told the team’s official site. “He was begging us to do more and all that, but we were trying to do the right thing by him, and he was doing phenomenal things just to play for the last two months.” But Wilson’s adjusted yards-per-attempt didn’t increase meaningfully after that interview.Though three rushing touchdowns got Seattle the points they needed to win in Week 6, they might not have happened if the Falcons hadn’t set them up: Ryan’s sack-fumble on his own nine-yard line led to the game’s first score; his interception near midfield set up the last one.Even then, it almost wasn’t enough. The Seahawks’ final go-ahead field goal still left Ryan and company with a 1:57 to drive for a game-winning score; a controversial fourth-down no-call sent them packing:Since that play, however, the Falcons spent the season improving — and proving themselves the better team.In Football Outsiders’ Weighted DVOA, which prioritizes recent performance, the Falcons are the No. 4-ranked overall team at 19.8 percent; the Seahawks are ranked 14th at 4.7 percent. While the Seahawks’ offense ranked 17th in both season-long (-2.7 percent) and weighted (-2.1 percent) DVOA, the Falcons’ defense rises from 27th (8.1 percent) to 22nd (5.6 percent) when recent games are more heavily weighted.Now Wilson will have go on the road and score more points against the improved Falcons than Ryan can score against the Seahawks’ struggling defense.Check out our latest NFL playoff predictions. read more

Man in custody after stabbing in Costco parking lot

first_img March 23, 2018 CARLSBAD (KUSI) — A man was taken into police custody Friday after stabbing an acquaintance in a Costco parking lot.At approximately 2:47 p.m., officers from the Carlsbad Police Department responded to the parking lot of the Costco, located at 951 Palomar Airport Road regarding the report of a stabbing.Upon arrival, Officers found the victim in serious condition with multiple stab wounds.The suspect, identified as Charles Higgins, a 62-year-old male, fled the scene prior to police arrival. The Carlsbad Police Department located Higgins in Temecula where he was taken into custody, with the assistance of Murrieta PD, the Border Patrol and the Riverside Sheriff’s Department.The victim and suspect are known to each other and this is not a random act. There are no outstanding suspects.The Carlsbad Police Department Investigations Division responded and is continuing the investigation. Man in custody after stabbing in Costco parking lot KUSI Newsroom, Posted: March 23, 2018 KUSI Newsroom Categories: Local San Diego News FacebookTwitterlast_img read more

POLICE LOG for July 8 911 Call Over Skunk Smell Fight At

first_imgWILMINGTON, MA — Here are highlights of the Wilmington Police Log for Monday, July 8, 2019:A Sachem Circle caller reported a swarm of bees between her house and neighbor’s house. Animal Control Officer notified a bee service, which will be out later in the day to safely remove them. (9:50am)Animal Control Officer reported a large wasp nest in a Main Street shed. Officer advised resident how to remove it. (10:21am)A walk-in party found a Michael Kors bracelet at Cumberland Farm Gas Station. (12:56pm)An anonymous caller reported they were told a juvenile female was threatening to fight the caller’s friends at the skate park. Police checked skate park. No one in area. (1:55pm)Animal Control Office retrieved a cardinal with an eye injury from Salem Street. (2:08pm)Caller called 911 to report there’s a skunk in her yard and the smell is overwhelming. She requested an officer to scare it or euthanize it. Police advised her the skunk will move along and if it doesn’t, contact the Animal Control Officer in the morning. Caller claimed not have phone number for station’s business line. (9:52pm)(DISCLAIMER: This information is public information. An arrest does not constitute a conviction. Any arrested person is innocent until proven guilty.)Like Wilmington Apple on Facebook. Follow Wilmington Apple on Twitter. Follow Wilmington Apple on Instagram. Subscribe to Wilmington Apple’s daily email newsletter HERE. Got a comment, question, photo, press release, or news tip? Email wilmingtonapple@gmail.com.Share this:TwitterFacebookLike this:Like Loading… RelatedPOLICE LOG for August 19: Fist Fight At Planet Fitness; Hawk Stuck Inside Building; Gas Line StruckIn “Police Log”POLICE LOG for September 3: Driveway Paving Solicitors; Skate Park Tagged; WPD Assist With Pick-Up At SchoolsIn “Police Log”POLICE LOG for July 18: Cat Gets Stuck In Wall After Plastering Project; Baby Raccoons Get Stuck In ChimneyIn “Police Log”last_img read more

Printing liquid metals in threedimensional structures

first_img © 2019 Science X Network Reconfiguration of EGaIn printed in the work. Credit: Science Advances, doi: 10.1126/sciadv.aaw2844 Researchers create soft, flexible materials with enhanced properties Using the 3-D printing technique to reconfigure a square coil antenna. Credit: Science Advances, doi: 10.1126/sciadv.aaw2844 The electrical contact of direct-printed and reconfigured liquid metals. (A) Schematic illustrations of direct printing (left) and reconfiguration (right). (B) Dependence of total resistance on the length of the channel. Error bars represent the SD. (C) Current-voltage characteristics between Ag pads and direct-printed EGaIn. (D) Current-voltage characteristics between Ag pads and reconfigured EGaIn. (E and F) SEM images of EGaIn on an Ag pad after 7 hours of direct printing. (G and H) SEM images of EGaIn after 7 hours of reconfiguration. Scale bars, 200 μm. Credit: Science Advances, doi: 10.1126/sciadv.aaw2844 They performed reconfigurations many times to generate a thin oxide interface and preserve electrical properties of the material under ambient conditions. The free-standing features could be encapsulated in stretchable, conformal configurations. Park et al. demonstrated applications in the form of reconfigurable antenna, tunable by changing geometries and reversibly movable interconnections to use the constructs as mechanical switches. The free-standing 3-D structures were advantageous to minimize the number and space between interconnections for higher integration, as seen with microLED arrays. The results are now published on Science Advances. Advanced technologies that form 3-D conductive structures with high-resolution, high aspect ratios and minimal error of displacement are important to increase device integrity. Device deformability is a key consideration for free-form electronics, including stretchable electronics, wearable electronics, soft actuators and robotics. These electronic devices typically require conformation with movable, arbitrary shapes such as joints or arms, or the soft surfaces of living organisms. Realizing such stretchable devices with conventional materials such as silicon are a challenge due to their brittleness. Materials scientists have therefore developed diverse conductive materials with excellent stretchability in the form of wavy thin metals, metallic networks and elastomeric composites, yet these processes are unable to form scalable 3-D structures. In addition, 3-D printed, and thermally annealed metals are relatively stiff and rigid causing damage to soft, tissue-like substrates. In the experimental setup, Park et al. connected a nozzle to an ink reservoir or pressure controller. The materials scientists used EGaIn (75.5 percent gallium and 24.5 percent indium alloy by weight) as the ink and controlled the distance between the nozzle tip and polymer substrate to deliver the ink. Using scanning electron microscopy (SEM), they viewed the EGaIn pattern printed with complex 2-D and 3-D geometries and used the technique to print more diverse patterns such as interconnects of electric circuits with high resolution. Explore further LEFT: 3D reconfiguration of liquid metals for electronics. (A) Schematic illustrations of the reconfigurable antenna. (B) Schematic illustrations of two concentric antennas (top) and the SEM image of the disconnected region (bottom). Scale bar, 300 μm. (C) Schematic illustrations of two concentric antennas that are electrically connected (top) and the SEM image of connected lines by reconfiguration (bottom). Scale bar, 300 μm. (D) Measured scattering parameters of the printed antenna in disconnected and connected states. (E) Schematic illustrations of the reconfiguration process for dynamic switching of LEDs. (F) Colorized SEM image of three LED pixels and EGaIn interconnects. The red, green, blue, and yellow colors correspond to red, green, and blue LEDs and EGaIn, respectively. Scale bar, 1 mm. (G) Photograph of three LED pixels and EGaIn interconnects. Scale bar, 1 mm. (H) Schematic illustrations of reconfiguration and photographs of LED working. Scale bars, 5 mm. (Photo credit: Young-Geun Park, Yonsei University). RIGHT: MicroLED array with 3D liquid metal interconnects. (A) Schematic illustration of the microLED array with reconfigured 3D interconnects. (B) Colorized SEM image of the microLED array and EGaIn interconnects. Blue and yellow colors correspond to microLED and EGaIn, respectively. Scale bar, 300 μm. (C) Colorized SEM image of 3D interconnects. The blue and yellow colors correspond to the microLED and EGaIn, respectively. Scale bar, 300 μm. (D) Photographs of light emission of the microLED array. Scale bars, 1 cm. (E) Current-voltage characteristics of microLED with reconfigured interconnects under flat or bent condition. (Photo credit: Young-Geun Park, Yonsei University). Credit: Science Advances, doi: 10.1126/sciadv.aaw2844 Journal information: Science Advances Comparatively, liquid metals such as eutectic gallium-indium alloy (EGaIn) or gallium-indium-tin alloy (Galinstan) are intrinsically stretchable, with low toxicity and minimal volatility for superb electrical conductivity—comparable to solid metals. Direct ink printing with a nozzle can form free-standing 3-D structures at room temperature by stacking droplets of liquid metal upon one another but the resulting resolution is not suited to build electronic devices. In the present work therefore, Park et al. report a high-resolution printing method with liquid metal for its direct reconfiguration into 3-D electrode patterns through a nozzle, under ambient conditions. When they applied DC or AC bias to monitor electrical breakdown, the temperature too increased in the experimental setup affecting the mechanical stability of the EGaIn 3-D features. The constructs maintained their initial free-standing 3-D structure without structural collapse at 5000C for 30 minutes. After repeated heating and cooling at room temperature, the oxide skin of the 3-D feature slightly wrinkled due to thermal expansion between the oxide shell and EGaIn core. Park et al. tested the electrical contact of direct-printed and reconfigured liquid metals and measured the dependence of total resistance on the length of the printed channel to show that the resistance of EGaIn patterns significantly increased with time under ambient conditions. As a proof-of-principle of the reconfigurable electronics developed in the present work, Park et al. demonstrated the formation of a reconfigurable antenna with ability to modify its resonance frequency and radiation properties by changing its geometry. For this, the scientists formed a dual coil antenna structure on a glass slide by directly printing EGaIn. During reconfiguration, EGaIn formed a 3-D bridged interconnect, whose resonance frequency the scientists first determined, followed by their use to selectively operate three different light-emitting diodes (LEDs) with red, green and blue light emissions. The reconfigurable, free-standing interconnect maintained its resistance to reliably operate all LEDs at 3V during repeated detachment and connection of multiple reconfiguration steps. The free-standing 3-D interconnects formed using the process of reconfiguration were advantageous to build cross-geometries in a single XY plane, instead of using multiple layers to thereby prevent unwanted electric contact. For this, Park et al. demonstrated both transverse and longitudinal interconnects of EGaIn for a 4 x 4 array of microLEDs on a flexible polymer film to prevent short circuiting. Using the method, Park et al. minimized the number of interconnections integrated in a miniature device, as the 3-D pattern could efficiently minimize the number and space of interconnections. In this way, Young-Geun Park and co-workers demonstrated high-resolution 3-D printing using liquid metal and showed its application for stretchable 3-D integrations that are difficult to achieve with conventional engineering. Compared to existing 3-D printing techniques, this method can form fine, free-standing 3-D structures of electrodes with reconfigurable patterns. As an example, Park et al. engineered a reconfigurable antenna capable of modifying its resonance frequency via geometric changes. They also presented reversibly movable 3-D interconnections as mechanical switches that could facilitate higher compact integration in miniaturized devices. The scientists expect the high-resolution 3-D reconfiguration method to offer a promising new additive manufacturing strategy for highly integrated and stretchable next-generation electronic devices. More information: Young-Geun Park et al. High-resolution, reconfigurable printing of liquid metals with three-dimensional structures, Science Advances (2019). DOI: 10.1126/sciadv.aaw2844 B. Y. Ahn et al. Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes, Science (2009). DOI: 10.1126/science.1168375 Sihong Wang et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array, Nature (2018). DOI: 10.1038/nature25494 , Nature In a recent study on materials science and nanomedicine, Young-Geun Park and co-workers at the departments of Nanoscience, Nanomedicine and Materials Science and Engineering in the Republic of Korea developed an unconventional 3-D printing approach. The scientists engineered a high-resolution, reconfigurable 3-D printing strategy using liquid metals to form stretchable, 3-D constructs. Using the technique, they formed a minimum line width of 1.9 µm using direct printing and printed patterns for reconfiguration in to diverse 3-D structures while maintaining pristine resolutions. High-resolution printing of liquid metals. (A) Schematic illustration of a printing system. (B) SEM image of 2D and 3D high-resolution EGaIn patterns. Scale bar, 100 μm. Inset: Magnified SEM image of the 3D structures. Scale bar, 100 μm. (C) AFM image and cross-sectional profile of printed EGaIn line. Scale bar, 2 μm. (D) SEM image of 1.9-μm-wide EGaIn patterns. Scale bar, 10 μm. (E) SEM image of 3D patterns of EGaIn on a PET film and epoxy (SU-8). Scale bar, 10 μm. (F) Photograph of printed high-resolution EGaIn patterns in (B). Scale bar, 1 cm. (G) Photograph of interconnect patterns of EGaIn. Inset: Top-view photograph. Scale bars, 5 mm. (H) Optical micrographs of printed EGaIn lines according to printing velocities. Scale bar, 40 μm. (I) The plot of line widths versus printing velocities. (J) The plot of line widths versus inner diameters of nozzles. Error bars in (I) and (J) indicate the SD. (Photo credit: Young-Geun Park, Yonsei University). Credit: Science Advances, doi: 10.1126/sciadv.aaw2844 Citation: Printing liquid metals in three-dimensional structures (2019, June 27) retrieved 18 August 2019 from https://phys.org/news/2019-06-liquid-metals-three-dimensional.html , Science After directly printing EGaIn through a nozzle, the scientists lifted the nozzle tip for its relocation to the desired position of the substrate to continue printing. The fracture energy of the oxide skin connected the nozzle tip as a “rope” during lift-off. Park et al. measured the maximum velocities for different diameters of filaments to demonstrate different examples and formed 2-D and 3-D features with repeatable reconfiguration. During the process of reconfiguration, the scientists could lift-off a preprinted filament upright from a substrate without fracturing the construct. The observed stable electrodes could withstand electrical load to become increasingly integrated and miniaturized in electric devices. To verify the suitability of EGaIn electrodes as interconnects, Park et al. conducted electrical breakdown tests thereafter. This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.last_img read more